Clinical Trial Information for Sanfilippo Syndrome Type A

Current as of April 2021

Version: 2.0
Date: 29/04/2021
More information: research@sanfilippo.org.au
Introduction

The aim of a clinical trial is to determine whether a potential treatment is safe and that it works. Clinical trials involving rare diseases may be run differently to a usual clinical trial, often due to the small number of people with the disease. The process may be shorter than a usual clinical trial, and different phases may be combined. The diagram below outlines some common steps seen in the drug development process:

There are criteria that must be fulfilled in order to be included in a clinical trial. Similarly, there can be criteria that may render someone unable to participate. These strict criteria are chosen by the company carrying out the trial, to protect the safety of the trial participants and to give the trial the best chance of proving that the therapy works.

A well-executed clinical trial that proves a therapy to be safe and effective offers the best chance at getting regulatory approval and allowing more patients to access it.

Participating in a clinical trial is not a guarantee of a treatment, as not all therapies are proven to be safe and effective; however, at this point in time, clinical trials offer the only hope of getting early access to potential Sanfilippo treatments.

This document contains information on clinical trials for Sanfilippo Syndrome Type A – a table with a brief overview, a more detailed description and a handy glossary at the end. If you have any questions about this document or would like more information about Sanfilippo and/or clinical trials, please contact the Foundation.

For more information contact the Research Manager at the Sanfilippo Children’s Foundation: research@sanfilippo.org.au
Sanfilippo Syndrome Type A Clinical Trials

<table>
<thead>
<tr>
<th>Company</th>
<th>Trial</th>
<th>Trial Location(s)</th>
<th>Type of Therapy</th>
<th>Mode of Administration</th>
<th>Important Inclusion/ Exclusion Criteria (note: other criteria may also apply)</th>
<th>Current Results/ Progress (that has been made public)</th>
<th>Trial status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abeona Therapeutics, Inc</td>
<td>Type A trial for younger, higher-functioning patients (Transpere A Study)</td>
<td>Australia, USA and Spain</td>
<td>Gene Therapy (using AAV9 delivery virus)</td>
<td>Single intravenous injection (into the bloodstream)</td>
<td>Inclusion: Age 6 months to approx. 2 years (dependent on cognitive testing - Developmental Quotient (DQ) greater than 60). Exclusion: Previous exposure and antibodies to the AAV9 virus (up to 20-30% of children are excluded for this reason). Children with attenuated (less severe) forms of Sanfilippo are unable to take part.</td>
<td>20 Sanfilippo Type A patients have been treated so far. No serious adverse events have emerged to date. Reduced heparan sulfate in the urine and cerebral spinal fluid (CSF) has been reported, as well as reduced liver and spleen sizes. Data so far indicates improved cognitive development in children administered the treatment before age 2. When administered at older ages, patients show usual cognitive decline.</td>
<td>Recruiting</td>
</tr>
<tr>
<td>Abeona Therapeutics, Inc</td>
<td>Type A trial for patients with middle and advanced phases of Sanfilippo disease (ABT-003)</td>
<td>Australia, USA and Spain</td>
<td>Gene Therapy (using AAV9 delivery virus)</td>
<td>Single intravenous injection (into the bloodstream)</td>
<td>Inclusion: Aged 2 to 18yrs. Participants must have a Cognitive Developmental Quotient (DQ) less than 60. Must be ambulatory (able to walk) though can have assistance to walk. Exclusion: Previous exposure and antibodies to the AAV9 virus. Children with attenuated (less severe) forms of Sanfilippo are unable to take part.</td>
<td>Enrolment commenced in late Oct 2019. No results as yet.</td>
<td>Recruiting</td>
</tr>
<tr>
<td>Lysogene</td>
<td>Type A trial, using LYS-SAF302.</td>
<td>USA, France, Netherlands and UK</td>
<td>Gene Therapy (using AAVrh10)</td>
<td>Single intracerebral injection (directly into the brain)</td>
<td>Inclusion: 6 months and older. Developmental Quotient (DQ) greater than 60. Exclusion: Participation in another gene or cell therapy trial.</td>
<td>Phase I/II trial (now concluded) included 4 children and showed the therapy appears safe, and the youngest child showed some signs of cognitive improvement. A Phase II/III trial was active, no longer recruiting.</td>
<td>Active, no longer recruiting</td>
</tr>
<tr>
<td>Phase</td>
<td>Delivery Method</td>
<td>Inclusion Criteria</td>
<td>Exclusion Criteria</td>
<td>Recruitment Notes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>------------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II/III.</td>
<td>virus)</td>
<td>Past use of enzyme replacement therapy for a period greater than 3 months. Children with attenuated (less severe) forms of Sanfilippo are unable to take part.</td>
<td>phase II/III trial commenced with a modified gene therapy product with the aim to recruit 20 participants. In June 2020, with 19 patients treated, the FDA put a hold on further recruitment due to MRI anomalies. Interim results presented at the 2021 WORLD conference, indicate the treatment has been well tolerated with no serious adverse events, apart from the MRI findings, which are not associated with any symptoms. Cognitive development data is still to be analysed, but reductions in heparan sulphate have been sustained over 12 months. The estimated study completion is Jan 2022.</td>
<td>paused by FDA in June 2020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esteve</td>
<td>Barcelona</td>
<td>Gene Therapy (using AAV9 virus)</td>
<td>Single intra-cerebro-ventricular (ICV) injection (directly into the CSF).</td>
<td>Esteve plans to recruit 6 patients for this initial clinical trial. No results have been released yet.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type A trial</td>
<td>2 years and older. Onset of symptoms within the first 6 years of life. Potential participants must undertake cognitive testing and score within a certain range.</td>
<td>Participation in another gene/cell/enzyme replacement therapy trial (past or present). Previous exposure and antibodies to the AAV9 virus. Wheelchair dependence.</td>
<td>Recruiting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orchard Therapeutics</td>
<td>UK</td>
<td>Stem cell-based</td>
<td>Patient’s stem cells taken from blood/ bone</td>
<td>At the 2021 WORLD conference, Orchard Therapeutics presented the results to date for the first three Sanfilippo type A children</td>
<td>Recruiting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swedish Orphan Biovitrum (SOBI)</td>
<td>Type A trial using SOBI003 (all treated under 2 years of age). Treatment has been well-tolerated. Initial results indicate much higher enzyme levels in the blood, while heparan sulphate and other complex molecules in the urine return to normal levels. Data on cognitive development is still to come.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lundquist Institute for Biomedical Innovation</td>
<td>Anakinra drug (all types of Sanfilippo) (all treated under 2 years of age). Treatment has been well-tolerated. Initial results indicate much higher enzyme levels in the blood, while heparan sulphate and other complex molecules in the urine return to normal levels. Data on cognitive development is still to come.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please note: If your child does not meet the strict criteria for a Clinical Trial, it does not mean they will be unable to receive that treatment in the future (if the clinical trial is successful and the therapy is approved).
Current Clinical Trials and Clinical Trial Plans for Sanfilippo Type A
Updated April 2021

Gene therapy clinical trials

Abeona Therapeutics gene therapy for Sanfilippo types A and B

Abeona Therapeutics is conducting clinical trials of gene therapy for Sanfilippo types A and B and currently has sites in the USA, Spain and Australia (type A only). The first trial for Sanfilippo type A started in the USA in May 2016 and the first Australian patients were treated at Adelaide’s Women’s and Children’s Hospital in 2017.

The program is the result of a unique collaboration between patient groups and researchers at Nationwide Children’s Hospital in Ohio together with Abeona. The phase I/II trial was funded by international patient groups, including the Sanfilippo Children's Foundation.

Participants in the clinical trials are administered the gene therapy product intravenously (into the bloodstream). The gene therapy consists of a virus (AAV9) which has the ability to cross the blood-brain-barrier to deliver a healthy copy of the gene that is faulty in Sanfilippo Types A or B.

Encouraging results have been reported - the gene therapy appears to be safe and reductions in heparan sulfate, the toxic substance that builds up in children with Sanfilippo, have been seen in both the urine and the cerebral spinal fluid (CSF). The liver and spleen, which are enlarged in children with Sanfilippo, has reduced.

Further updates were provided at the 2021 WORLD Symposium and American Academy of Neurology annual meeting in April 2021. In total, 20 Sanfilippo type A patients have been treated in this clinical trial so far. Unfortunately, individuals who were both older and received lower doses have shown no improvement in cognitive development despite reductions in heparan sulphate in the CSF. Older patients who received a higher dose continued to show a similar rate of cognitive decline compared to untreated patients. However, three patients have been treated so far who were under the age of two and half at the time of treatment and have now been followed out to the ages of between 3.5 and 5 years. These three individuals are showing trajectories of cognitive development that are in line with typical children without Sanfilippo Syndrome. This is particularly encouraging considering that they are now at an age where development would be expected to have slowed. 5 more children in this young age group have now been treated and data is being gathered to confirm these results. Abeona have indicated that they will be consulting with the USA Food & Drug Administration to discuss next steps towards approval of the treatment.

The inclusion criteria for the main trials have been narrowed to children between the ages of 6 months and approximately 2 years (depending on cognitive testing). To be eligible children also must have not previously been exposed to the AAV9 virus that is used to deliver the
gene therapy. AAV9 is a harmless virus that exists in the environment. A blood test will be done to see if the child has antibodies to the virus – up to 20-30% of children are excluded for this reason.

There is also a separate arm of the type A trial now recruiting some older, more advanced patients (ABT-003).

Please see eligibility criteria on clinicaltrials.gov:
- Sanfilippo type A trial for younger, higher-functioning patients (Transpher A Study)
- Sanfilippo type A trial for patients with middle and advanced phases of Sanfilippo disease (ABT-003)
- Sanfilippo type B trial (Transpher B Study)

Lysogene gene therapy trial for Sanfilippo type A

Lysogene was founded by Karen Aiach, mother of a Sanfilippo Type A child in Paris, France. In 2013, Lysogene successfully completed a Phase I/II clinical trial for its gene therapy product SAF-301: four children affected by Sanfilippo Type A were administered a gene therapy product directly into the brain. This involved surgery to inject virus (AAVrh10) carrying a healthy copy of the SGSH gene directly into the brain (intra-cerebral injection).

The Phase I/II trial concluded with good safety results and promising indicators of efficacy. Some alterations have been made to the gene therapy product, now named LYS-SAF302, and a Phase II/III trial is underway. The trial aimed to recruit 20 Sanfilippo Type A patients at sites in the USA, France, UK, Germany and the Netherlands, more details of the trial are available here.

In June 2020, with 19 patients enrolled, recruitment was put on hold by the FDA due to unusual MRI findings confined to the sites of therapy injection. In a press release, the company said that the 19 patients treated so far will continue to be closely monitored.

At the 2021 WORLD conference, interim results from the 19 patients treated so far were presented and indicated that the treatment has been well tolerated with no serious adverse events other than the MRI findings which are not associated with any clinical symptoms. While the cognitive development data is still to be analysed, the team have shown a reduction of heparan sulphate and other secondary storage molecules in the CSF that is sustained for at least 12 months following treatment.

Esteve Sanfilippo Type A gene therapy trial

Pharmaceutical company Esteve is currently recruiting for a Phase I/II gene therapy clinical trial in Barcelona for Sanfilippo Type A.

The treatment approach consists of a single injection into the cerebrospinal fluid of a virus (AAV9) carrying a healthy copy of the SGSH cerebral spinal fluid (CSF)
(Intracerebroventricular (ICV) injection). They plan to recruit six patients for this initial clinical trial. No results from this trial have been released.

Esteve is also developing a similar gene therapy approach for Sanfilippo type B, but this is not yet in clinical trial.

For more information, visit Esteve's Sanfilippo program and the European Clinical Trials Register.

Orchard Therapeutics’ stem cell-based gene therapy program for Sanfilippo Types A and B

Dr Brian Bigger and colleagues from The University of Manchester has developed an "autologous ex-vivo gene therapy" for Sanfilippo types A and B. It works by taking the patient's own stem cells (from the blood or bone marrow) and using a virus to deliver a healthy copy of the faulty gene (SGSH for Type A or NAGLU for Type B). These cells are then transplanted back into the body.

Bone marrow transplants have been previously tried as a treatment for Sanfilippo, but they were largely unsuccessful because the cells did not produce enough of the enzyme that is missing. This approach aims to boost the amount of enzyme produced by the transplanted cells and has the advantage that the patient's own cells are used, lowering the risk of transplant rejection.

The University of Manchester entered into a licensing agreement with Orchard Therapeutics to bring its stem cell gene therapy program to human clinical trial. The type A therapy is currently in a clinical trial and type B is in the pipeline.

In May 2019 it was announced that a two-year-old boy with Sanfilippo Type A received this experimental therapy in Manchester in January, under what is called a “Special access” licence. The early results from this child were presented at the WORLD conference (Feb 2020), showing reduction of GAGs in urine, blood and CSF (no cognitive data).

Following this, Orchard Therapeutics launched a full trial at Royal Manchester Children’s Hospital. At the 2021 WORLD conference, Orchard Therapeutics presented the results to date for the first three Sanfilippo type A patients who have received this experimental therapy. All three were aged under 2 years at the time of treatment. Treatment has been well-tolerated and the cells have been incorporated well following transplantation. Results from these patients following transplantation indicate much higher enzyme levels in the blood compared to healthy individuals. Also, the presence of GAGs (heparan sulphate and other complex molecules) in the urine fell to normal levels. Data on cognitive development is still to come. More information on these results can be found in the second part of this media release.

For more information on the clinical trial, please read the summary on clinicaltrials.gov.
Enzyme replacement therapy clinical trials

SOBI's SOB1003 for Sanfilippo Type A

SOBI, a biopharmaceutical company based in Stockholm, has been running a clinical trial of an Enzyme Replacement Therapy product which is called "SOBI003". There are trial sites in the USA, Germany and Turkey. The first patient was dosed in August 2018.

SOBI003 is a version of the enzyme that is missing in Sanfilippo Type A which has been chemically modified so that it lasts for longer inside the body, giving it more of a chance to get inside cells and do its job of breaking down GAGs.

Six patients were treated in the trial, with three receiving a low dose and three a higher dose. Clinical trial results have been posted on the clinicaltrial.gov website. These results have not been formally published in a peer-reviewed journal, however, they indicate heparan sulfate levels were reduced in the CSF, blood and urine. However, significant levels of the drug were only observed in the CSF of the higher dose group. Anti-drug antibodies were observed in 5 of the 6 patients by the six-month follow-up, indicating that the immune system was working to clear the drug. Brain volume increase was seen in the high dose group in comparison to a loss of brain volume in the lower dose group. However, results indicate there were no improvements in cognitive development. Child quality of life did not appear to be improved, however, there may have been a minimal improvement in overall family impact. Further analysis and publication of the results is required before any conclusions can be drawn.

In June 2019, SOBI announced that it was looking to divest SOBI003 and in early 2021 confirmed that trial would stop in April 2021. SOBI is open to another industry partner taking over the program, but to date there has been no further update on this.

For more information visit clinicaltrial.gov.

Other targets

Researchers are working to find other drugs that may reduce the progression of Sanfilippo and improve quality of life, these include:

- Substrate reduction therapies to reduce the amount of heparin sulphate that is produced by the body so that there is less to build up
- Chaperones that help the faulty enzymes fold correctly and get to the right part of the cell (the lysosome) to do their job of breaking down heparin sulphate
- Drugs that increase a process called “autophagy” that clears unnecessary or dysfunctional components from cells, allowing them to function better
- Drugs to target certain parts of the immune system that are thought to contribute to the cognitive decline seen in children with Sanfilippo
- Treatments targeting the symptoms of the disease such as behavioural problems, sleeping issues or lung function, which aim to improve the quality of life of children with Sanfilippo and their families.

There are two trials in this category, either started or being planned:
- Anakinra, a drug that suppresses inflammation, is in clinical trial at the Lundquist Institute (formerly LA Biomed) in the USA. It is thought that Anakinra could target the inflammation in the brain which is common across all types of Sanfilippo. A phase II/III trial is currently underway, which was developed in collaboration with, and funded by, Cure Sanfilippo Foundation and other community stakeholders. It aims to assess whether Anakinra can improve the behavioural and other physical symptoms of Sanfilippo. Recruitment and data analysis are still ongoing, but so far the trial has treated 8 patients with either Sanfilippo type A or B. It is showing encouraging signs with most parents reporting improvements in one or more symptoms, such as movement, fatigue, behaviour, pain or parental stress. Longer follow-up and more detailed statistical analysis of the data is still required to determine if the treatment is having a significant effect on symptoms. This drug is approved for the treatment of rheumatoid arthritis (RA). There is a very wide inclusion criteria for this trial – all ages, types and attenuated patients are able to participate (please note that the trial is active but not currently recruiting). More information about this trial can be found on its clinicaltrials.gov page.
- A clinical trial of Trehalose, a small sugar, is being planned by Seelos Therapeutics and Team Sanfilippo in the USA and Europe. Trehalose is to be given intravenously (through the vein). It is able to enter the central nervous system (the brain and spinal cord), stabilise proteins, and promote autophagy, a process to dispose of aggregated proteins and other cellular waste. Clinical trial design is currently being negotiated with the FDA and EU.

Other clinical study opportunities:

Researchers in Adelaide are creating neuronal cell models from cells donated by Australian children with Sanfilippo. These cell models will be used to screen large libraries of existing drugs with many different modes of action, to see if any can be repurposed to alleviate symptoms. Read about the ‘Brain in a Dish’ project.
Glossary

Adeno-associated virus (AAV)

An adeno-associated virus is a specific virus that is able to infect humans, but not currently known to cause disease. Because of these features, researchers want to use this virus as a delivery vehicle, in order to deliver therapies into cells. There are many different variants of AAV that occur (both naturally and engineered) such as AAV9 and AAVrh10, and some can cross the blood-brain barrier.

Attenuated form

An attenuated form of Sanfilippo is one that is less severe and/or slower to progress than a severe Sanfilippo form. Whether an individual has a severe or attenuated form of Sanfilippo largely depends on the type of genetic change that the individual has. The S298P genetic change is commonly noted for exclusion, as individuals with this tend to have an attenuated form of Sanfilippo.

Blood-brain barrier

The blood-brain barrier (BBB) is a very thin layer of cells that separates the blood from the central nervous system (CNS). It is highly selective, meaning that only specific things are able to exit the bloodstream and enter the CNS. This helps to protect the brain from harmful bacteria and viruses, but it can hinder the effectiveness of therapies that must cross the BBB to work in the brain.

CNS (Central nervous system)

The CNS is comprised of the brain and the spinal cord.

Clinical Trial

Clinical trials are research studies that test a specific therapy in humans, with the aim of confirming whether a therapy is safe and effective to be used in a specific population.

CSF (Cerebrospinal fluid)

Cerebrospinal fluid (CSF) is the fluid that bathes the brain and the spinal cord. It helps to protect the brain and spinal cord in the case of trauma and helps to supply nutrients and remove waste products.
Developmental quotient (DQ)

Developmental quotient (DQ) is a number used to measure a child’s development and determine whether there is a developmental delay. DQ is calculated based on the result of neuropsychological test(s) compared to the child’s chronological age.

Enzyme Replacement Therapy (ERT)

Enzyme Replacement Therapy involves the delivery of functional enzyme into the body. In MPS IIIA, the enzyme that needs to be replaced is called sulfamidase.

Gene Therapy

Gene Therapy involves the delivery of a healthy copy of a gene into the body. The four subtypes of Sanfilippo correspond to four different genes. For MPS IIIA, the gene involved is called SGSH.

Heparan sulfate

Heparan sulfate is a complex, long, linear sugar molecule found in the body. It is an important molecule that is made by the body, but also must be broken down after use. In Sanfilippo Syndrome, one of the four enzymes involved in degrading heparan sulfate is faulty.

Intracerebral injection

An intracerebral injection is an injection directly into the brain. This represents a straightforward way of delivering agents to the brain that may be unable to cross the blood-brain barrier, though the procedure is more invasive.

Intracerebroventricular injection

An intracerebral injection is an injection directly into one or more areas of the brain that produces CSF. This also represents a straightforward way of delivering agents to the brain that may be unable to cross the blood-brain barrier, though the procedure is more invasive.

Intravenous injection

An intravenous injection is an injection directly into the vein. Common sites include the elbow, wrist, or back of the hand.

Phases of clinical trial

Clinical trial Phases are different stages or steps with different goals and experimental set ups. Traditionally, there are four stages: I, II, III and IV. The increasing numbers represent a more advanced stage of the clinical trial.
Stem cells and stem cell therapy

Most cells in the body are specialised, such as muscle cells or red blood cells. These specialised cells perform very specific roles and often have a set lifespan before they must be replaced. In contrast, stem cells can make more stem cells (‘self-renewal’), or they can make cells that will turn into specialised cells (‘differentiation’).

Stem cell therapy involves the use of stem cells to treat disease. A well-known example is bone marrow transplant for leukaemia. For genetic diseases like Sanfilippo, one way of using stem cells would be to collect stem cells from a patient (e.g. from the bone marrow), and a healthy gene copy inserted into these cells in the laboratory. The new stem cells can then be returned back to the patient. Orchard Therapeutics has stem cell therapy for MPS IIIA and IIIB in its research pipeline.

It is important to ensure that any therapies, including stem cell therapies, have the appropriate regulatory approval. In some parts of the world, there are unregulated stem cell therapy clinics, which market therapies that are unproven and potentially dangerous (see here for more information from the FDA).

Subcutaneous injection

A subcutaneous injection is an injection directly under the skin, between the skin and muscle.

Substrate reduction therapy (SRT)

Substrate reduction therapy aims to reduce the amount of substrate involved in a disease state, in order to improve symptoms. In the case of Sanfilippo, SRT involves therapies that aim to decrease the amount of heparan sulfate, which normally builds up to toxic levels inside the body.